
METRIC: A Middleware for Entry Transactional Database
Clustering at the Edge

Enrique Saurez1, Bharath Balasubramanian2, Richard Schlichting3, Brendan Tschaen2, Zhe Huang2,
Shankaranarayanan Puzhavakath Narayanan2, Umakishore Ramachandran1

Georgia Institute Of Technology1, AT&T Labs Research2, United States Naval Academy3
esaurez@gatech.edu,bharathb@research.att.com,schlicht@usna.edu,bt054f@att.com,

{zhehuang,snarayanan}@research.att.com,rama@gatech.edu

Abstract
A geo-distributed database for edge architectures spanning thou-
sands of sites needs to assure efficient local updates while repli-
cating sufficient state across sites to enable global management
and support mobility, failover etc. To address this requirement, a
new paradigm for database clustering that achieves a better bal-
ance than existing solutions between performance and strength
of semantics called entry transactionality is introduced. Inspired
by entry consistency in shared memory systems, entry transac-
tionality guarantees that only a client that owns a range of keys in
the database has a sequentially consistent value of the keys and
can perform local and, hence, efficient transactions across these
keys. Important use cases enabled by entry transactionality such as
federated controllers and state management for edge applications
are identified. The semantics of entry transactionality incorpo-
rating the complex failure modes in geo-distributed services are
defined, and the difficult challenges in realizing these semantics
are outlined. Then, a novel Middleware for Entry Transactional
Clustering (METRIC) that combines existing SQL databases with an
underlying geo-distributed entry consistent store to realize entry
transactionality is described. This paper provides initial findings
from an on-going effort.

ACM Reference format:
Enrique Saurez1, Bharath Balasubramanian2, Richard Schlichting3, Bren-
dan Tschaen2, Zhe Huang2, Shankaranarayanan Puzhavakath Narayanan2,
Umakishore Ramachandran1. 2018. METRIC: AMiddleware for Entry Trans-
actional Database Clustering at the Edge. In Proceedings of Middleware’18,
Rennes, France, December 2018, 6 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction
Cloud and network service providers are increasingly investing in
infrastructure at the edge of the network. Examples of this trend
include Microsoft’s Azure Stack for the edge [1], large edge cloud
infrastructures being built by AT&T and Verizon [2, 3], and the
open-source Akraino edge stack [4] co-founded by AT&T and Intel.
Akraino provides a blueprint for AT&T’s edge software stack, which
will be deployed on edge sites, and is expected to host various edge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware’18, Rennes, France
© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

services like the virtualized RAN for 5G deployments and services
for deep learning and augmented reality.

A geo-distributed database to manage client and service state
for edge architectures that span multiple sites needs to satisfy two
important requirements. First, processes need to update local state
in an efficient and often transactional manner. Second, some or
all of this state needs to be replicated consistently at other sites
to enable global management and to support capabilities such as
failover and mobility. For example, the control plane for AT&T
edge services is envisaged to be a federation of regional controllers
each managing hundreds of edge sites. Each edge site then has
local controllers that typically perform transactions only on the
state of their edge sites, while allowing the regional controllers
to perform occasional transactions across the state of the edge
sites in different regions to enforce global actions (described in
Section 2). We address these requirements through a new paradigm
for database clustering called entry transactionality, and describe
METRIC, aMiddleware for Entry Transactional Clustering.

The first requirement is often addressed by having an instance
of a SQL database running locally or at least close enough to assure
fast access. While existing solutions for clustered databases offer a
starting point for the second requirement, none of them achieve the
right balance between strength of guarantees and performance, es-
pecially at the scale and geo-distribution of edge services deployed
across thousands of sites. On the one hand, solutions like MariaDB
with Gallera clustering [5], Spanner [6], and CockroachDB [7] pro-
vide full transactionality, but perform expensive 2-phase commit
and rollback protocols across sites on which they are deployed. On
the other hand, clustering in PostgreSQL guarantees transaction-
ality only within each site with asynchronous replication across
sites, thereby violating the requirement for consistent replication.

This paper describes a clusteringmiddleware calledMETRIC that
achieves the right balance between performance and replication
semantics by realizing entry transactionality, a concept inspired by
entry consistency in shared memory systems [8]. Entry transac-
tionality guarantees that only a database client that owns a range
of keys: (a) has a sequentially consistent value of the keys at the
time ownership is granted, and (b) can perform local and efficient
transactions across these keys. Non-owners can read the state of
the keys, but with no consistency guarantees. We define the precise
semantics of METRIC in Section 3.

While sharding is used internally in databases for horizontal
scaling and performance [6, 7, 9, 10], by elevating the concept of
key-ownership to an abstraction, rather than just in the underlying
database implementation, METRIC enables service designers to
construct services in a manner suited to geo-distribution (examples
in Section 2). Further, since consistent replication and the complex

Figure 1. An architectural overview (details in Section 4) of a multi-site deployment of METRIC, where the actual key-value pairs for each range (Ri) are maintained in the SQL
database associated with each METRIC process, and the locks for each range and the redo log are maintained in a geo-distributed EC store. A site is a data center at a physical
location connected with other sites through a WAN.

failure modes of geo-distributed services are incorporated in the
METRIC semantics, the service designer only has to understand
how state ownership transitions to suit the needs of the service.

Realizing entry transactionality in a performant and correct
manner involves addressing a challenging conflict between effi-
ciency and geo-replication. In particular, while the owner of a key
range should be able to perform transactions efficiently, enough
transaction state also has to be geo-replicated to ensure that a po-
tential new owner has access to consistent state despite failures. We
address this conflict in METRIC through a lightweight clustering
middleware over instances of a standard SQL database, as shown in
Figure 1. A client can contact any METRIC process deployed on a
nearby site to acquire ownership of keys and perform transactions
on the SQL database connected to that METRIC process. The SQL
database serves as an efficient site-level cache for each METRIC
process and crucially, it can be chosen according to production pref-
erences for specific databases like MariaDB or PostgreSQL, with
their in-built clustering mechanisms (if any) turned off.

Consistent replication across sites is realized by storing data
modified by each transaction in AT&T’s multi-site entry consistent
store (EC store) called MUSIC [11, 12]. This system implements the
abstraction of a key-value store, with locking primitives that pro-
vide entry consistency, i.e., where sequential consistency is enforced
only for the lock holder of a key. METRIC uses these abstractions
to enforce ownership and to implement an entry consistent redo
log, which offers better performance and availability across sites
when compared with common geo-distributed databases that use a
sequentially consistent commit/redo log across sites [6, 7].

In summary, then, this paper makes the following contributions:
• Identifying entry transactionality as an effective paradigm

for the database needs of edge-oriented architectures, moti-
vated by the use cases of federated state management and
mobility/failover support.

• IntroducingMETRIC, a middleware that realizes entry trans-
actionality, and defining the semantics of METRIC that take
into account the complex failure modes of geo-distributed
edge services.

• Providing an overview of the design and algorithms of
METRIC that combines standard database solutions with
a novel state replication protocol based on an underlying
geo-distributed EC store.

Since our primary goal in this paper is to motivate METRIC and
highlight key aspects, we only provide an overview of the overall
effort, and leave details related to on-going work on the algorithms,
implementation, and deployment for future papers.

2 Motivation
In this section, we describe two important use cases for entry trans-
actionality that are relevant for edge services: federated state man-
agement and ownership transition across edge service replicas trig-
gered by mobility, load-balancing, or failure. Both these use cases
are motivated by the need for a geo-distributed database to manage
the state of AT&T edge services.

Federation. A concrete example of the federation use case pre-
sented in the introduction is that of Virtual Network Function (VNF)
deployment across edge sites (Figure 2). In this use case, each re-
gional controller receives deployment specifications of VNFs from
a global controller and needs to identify appropriate edge sites,
i.e., the sites that satisfy the VNF’s constraints on locality, specific
hardware, etc., across which the virtual machines (VMs) of a VNF
need to be deployed. The local controller at each edge site per-
forms the actual role of placing the VMs of the VNF on the hosts
of the edge site, and needs to manage the state of resources in a
transactional database to ensure optimal and correct placement.
The regional controller periodically reads the state of the resources
across edge sites to track usage. For certain VNFs that require strict
performance guarantees, the regional controller needs to reserve
resources at the edge sites to ensure that these requirements are
adequately satisfied at deployment time.

Entry transactionality is an effective way to address the state
management requirements of this problem. Specifically, the regional
and local controllers can all share a multi-site METRIC deployment,
where the local controllers maintain their resource state in the SQL

2

Figure 2. The use of METRIC to enable federated state management across the local and regional controllers.

database of a nearby METRIC process, acquire ownership of this
state, and issue transactions over them during VM deployment.
During regular operation, the regional controllers (non-owners)
can read the state of these local resources from any METRIC pro-
cess. To reserve resources, the use of METRIC enables a regional
controller to simply acquire ownership of the state of all local con-
trollers managed by it, read the sequentially consistent state of
the resources, and then update the state in a transactional manner.
This idea can be generalized to perform state management for vari-
ous functions such as authentication and closed-loop control in a
federated manner across local and regional controllers.

Mobility/Failover Support. An important reason for having sites
closer to the edge of the network is to provide low-latency services
to end users. For example, consider an object recognition service
that performs deep learning at the edge. To provide service to users
close to them, we envision that replicas of this object recognition
service will be deployed at multiple edge sites across the country.
Each service replica maintains various aspects of the state corre-
sponding to the end user associated to that service replica—a catalog
of objects, mobility history, session state, account details and so
on. Sometimes a user associated with a service replica needs to
transition to a new service replica. This event is triggered by the ser-
vice to handle the failure of the old service replica, to load balance
among replicas, or to account for the user moving from one location
to another, necessitating association with a new service replica to
satisfy latency requirements. The new service replica needs access
to the latest state of the user and must continue modifying this
state as it serves the user. This requirement can be addressed by
maintaining user state in a METRIC deployment where each service
replica acquires ownership of the state of the users associated with
it, either at initialization or triggered by a transition.

The use cases described above can be addressed neither by a
fully transactional MariaDB/CockroachDB deployment across the
country due to the performance implications described in the intro-
duction, nor by asynchronous PostgreSQL replication since these
use cases often require stronger guarantees. Most systems address
similar use cases by maintaining independent database clusters for
different components—for example, a cluster for edge sites in a
city and a cluster for each regional controller. To obtain a feder-
ated view of shared state or to allow for transition, these systems
need complex handwritten code that migrates state between the
database clusters. This not only increases system complexity, but

is also prone to errors, especially in the face of the failures during
migration. A solution based on entry transactionality completely
hides such complexity from the system designer, who only needs to
understand how state ownership transitions. The underlying data
semantics are guaranteed by METRIC.

3 METRIC Semantics
In this section, we describe one of our core contributions, the seman-
tics of METRIC, and explain them using the use cases in Section 2.

Our system model assumes a distributed system of processes
that communicate using messages. To overcome the impossibility
of distributed consensus in asynchronous systems [13], like most
practical systems, we assume partial synchrony [14, 15] to achieve
consensus, where there are sufficient periods of communication
synchrony with an upper bound on message delay. Processes can
suffer crash failures [16], which implies that a process cannot dis-
tinguish between a failed process and one that is slow to respond
and/or unable to communicate. The latter is relatively common
in geo-distributed systems where failures in communication links
[17, 18] can render a process partitioned from some subset of other
processes in the system.

METRIC offers its clients the abstraction of a replicated database
with the additional notion of key ownership. The METRIC model
consists of a set of METRIC processes, where clients issue requests
to anyMETRIC process of its choice. While we support the full suite
of SQL operations, for ease of exposition, we assume a database that
maintains state in the form of an ordered range of unique keys each
with its own value. The semantics of replication is that a key has a
single correct value determined by the rule “last write wins,” based
on the timestamp associated with each write. The correct value
eventually propagates to all replicas, assuming frequent enough
communication.

Ownership.A client can acquire ownership to a contiguous range
of keys, or a key-range, at a METRIC process, where it is guaran-
teed access to the sequentially consistent state of the keys in the
key-range at that METRIC process. A single client can be the owner
of multiple non-overlapping key-ranges. Any client can take own-
ership of a key-range belonging to another client at any time at any
METRIC process. For example, in Figure 2, while L1 is usually the
owner for the key range (k1..k10) that it maintains atM1, when R1
wants ownership for this range, it can communicate with a closer
processM2 to obtain the latest values of the keys.

3

While it has no implications on correctness, for performance
reasons we assume that transfer of ownership is relatively rare
with minimal contention, i.e., typically there are only one or two
clients that want ownership of a key-range. Hence, METRIC does
not provide any arbitration mechanism across clients seeking own-
ership, and we assume explicit or implicit signaling among clients
to decide which client should be the new owner. For example, in the
federated controllers use case, the regional controller can explicitly
send a message to the local controllers to coordinate, and then ask
METRIC for ownership of their local state. In the edge mobility use
case, when a user moves from one service replica to another, the
new service replica requests and obtains ownership of the user’s
state with the implicit knowledge that the old service replica no
longer needs ownership.

Operations. Only the owner of a key-range can write to the keys
in a key-range. The write operation includes addition, deletion and
SQL-style joins of keys in the range. For both reads and writes the
owner sends the request to theMETRIC process that granted owner-
ship to the key-range. The owner is guaranteed ACID transactional
semantics with serializable isolation for all reads and writes to the
keys in the key-range. Hence, in Figure 2, if L1 obtains ownership of
(k1..k10) atM1, then it has to issue transactions to this key-range
at M1. Non-owners can read (potentially inconsistent) values of
any key at any METRIC process.

Failures. If a client does not receive a response to an ownership
request at a METRIC process, it assumes the latter has failed and
simply sends the request to some other METRIC process. If the
owner of a key-range does not receive a response for an operation
within a transaction at a METRIC process, it assumes the latter
has failed, re-requests ownership of the key-range at some other
METRIC process, and retries the aborted transaction at that process.
For example, in Figure 2, if L1 does not receive a response for a
certain query in a transaction to a key in (k1..k10) atM1, it needs
to acquire ownership of this range at another METRIC process, say
M3, and re-try the entire transaction.

We assume that client failures are detected using timeouts by
other clients. If a client detects the failure of another client, it can
acquire ownership of some or all of the keys owned by the failed
client and perform transactions on them. This enables the mobility/-
failover use case described in Section 2. If a client loses ownership
of its keys to another client due to erroneous failure detection, then
the operations of the original owner will fail, thereby informing it
that ownership has transitioned. Note that if a client loses owner-
ship of even a single key in a key-range, it loses ownership to all
the keys in that key-range.

METRICmay use other backend stores internally, and we assume
that at least a quorum of the processes of these backend stores are
always available. For example, in our design of METRIC, we main-
tain client key-value pairs in the MUSIC geo-distributed EC store,
which guarantees that data is replicated for both fault tolerance
and availability in at least a quorum of its processes.

Table 1 summarizes the main abstractions provided by METRIC
and Pseudocode 1 illustrates their use through a simple example
of a client accessing METRIC to own a key-range and perform
transactions on it.

A client that intends to perform transactions across a range of
keys in METRIC first needs to identify a METRIC process, proc,
typically located at a nearby site for performance reasons. The
client then uses the own function to acquire ownership over a range

Abstraction Description
ownerId = own (key-range) Returns a unique identifier that is good for

one request for ownership.
txId = beginTransaction (ownerId) Begins a transaction across the keys in the

key-range of the owner.
executeQuery (ownerId, txId,
query)

Performs SQL queries for the owner in a trans-
action including joins within the key-range.

commitTransaction (ownerId,
txId)

Commits a transaction. If a non-owner at-
tempts this, METRIC rejects the commit.

Table 1. METRIC abstractions that enhance standard SQL operations with new
abstractions for key-ownership.

of keys. The function returns a globally unique identifier ownId
(e.g., a UUID) that is used by METRIC to identify the owner for a
range of keys. On acquiring ownership, the client is guaranteed the
latest value of the keys in the range at proc and can now perform
transactions within that range using the standard interface to SQL
transactions provided by METRIC to begin, execute and commit
queries during a transaction. The one added requirement is that
the client also needs to include its ownerId so that METRIC can
verify that it is indeed the owner of the key range. Note that one
of the features of the METRIC abstractions is that the client can
use them to acquire ownership of a key range from another client,
either voluntarily or on detecting failure of the client, in a manner
identical to that shown in Pseudocode 1.

Pseudocode 1. Example use of METRIC abstractions.

1 # code snippet at client
2 # identify METRE process, "proc", at nearby site,
3 # e.g., a TCP end-point
4 ownerId = proc.own(key-range);
5 # client is now guaranteed sequentially consistent state
6 # of the keys in key-range at proc
7 # client has to use proc to perform transactions to this
8 # key-range
9 txId = proc.beginTransaction(ownerId);
10 # keys in query that belong to key-range
11 query1 = "select * from table, where k1 = ...";
12 rowSet = proc.executeQuery(ownerId, txId, query1);
13 query2 = "update table T, set .., where k2 = ..."
14 proc.executeQuery(ownerId, txId, query2)
15 proc.commitTransaction(ownerId, txId);

4 Design and Algorithms
4.1 Overview
Realizing entry transactionality is a challenging problem. On the
one hand, the owner of a key range should be able to perform
transactions efficiently at a METRIC process. On the other hand,
enough transaction state also has to be geo-replicated to ensure
that a new owner potentially accessing the keys on an entirely
different site has access to sequentially consistent state despite
the failures inherent in geo-distributed systems. This challenge is
exacerbated by our goal of being a drop-in replacement for the
clustering mechanisms in existing databases such as MySQL and
PostgreSQL to support production preferences.

While geo-distributed sharded databases also need to replicate
data consistently across sites, Spanner [6] relies on specialized
hardware for atomic clocks, while CockroachDB [7] incurs high
penalties for read operations. Both of these solutions use a sequen-
tially consistent cross-site commit log, where each operation to the
log incurs the cost of distributed consensus across sites. Calvin [19],

4

FoundationDB [20], and TiDB [21] rely on a global sequencer to
order their operations, which incurs a heavy penalty across sites as
well. Clearly, all these solutions are incompatible with the need to
provide efficient operations for the owner of a key range in entry
transactionality.

In this section, we present an overview of howMETRIC addresses
this challenge in a performant and correct manner. The key insights
behind the solution can be summarized as follows:

• Combining the rich and time-tested features of a SQL data-
base to provide transactionality to an owner of a key range
as a local cache, with the novel geo-distributed clustering
solution provided by METRIC.

• Using an Entry consistent (EC) store in a novel way both to
ensure exclusive access to the owner of a key-range and to
maintain a geo-distributed redo log that is replicated across
sites with entry-consistent semantics.

• Limiting the use of distributed consensus across sites to the
case of ownership transition.

• Ensuring that each query in a METRIC transaction is a local
SQL database operation by updating transaction state only
when committing a transaction using quorum operations
to the redo log in the EC store.

• Dealing with failures as essentially ownership transition,
thereby combining two crucial aspects of entry transaction-
ality and making it far easier to reason about correctness.

4.2 Design
Here, we describe the three main components of a METRIC deploy-
ment, as shown in Figure 1: METRIC processes, the SQL database
associated with each METRIC process, and the geo-distributed EC
store.

METRIC processes are deployed across multiple sites for locality,
availability, and fault-tolerance. They provide an interface to the
clients that can be accessed through advertised end-points (e.g.,
a TCP/REST endpoint) and implement the abstractions shown in
Table 1. A METRIC process is stateless in that it maintains all state
in the SQL database and the EC store.

Each METRIC process is strictly associated with an instance
of a SQL database (DB) that it uses to execute transactions for
clients that own key ranges at that METRIC process. We assume
that the DB supports ACID transactions with serializable level
of isolation, an assumption satisfied by most common databases
like MySQL and PostgreSQL. Moreover, the DB is assumed to be
purely local to each METRIC process and not clustered across sites.
However, to load balance and account for failures, the DB can be
clustered within a site, as long as it provides the abstraction of a
single transactional database to the METRIC process with which it
is associated. For example, a METRIC process can be connected to
a three-node MariaDB-Gallera [5] cluster deployed within a site, as
opposed to a single MariaDB instance.

One of our key insights is the use of an EC store to maintain a
geo-distributed redo log (and associated data structures) to ensure
that on ownership transition, the new owner has access to the
sequentially consistent state of its key range at the SQL DB of
the METRIC process that granted it ownership. Specifically, we
use the MUSIC (MUlti-SIte entry Consistency) EC key-value store
described in [11], which is now running in AT&T’s production
systems. MUSIC provides the abstraction of a replicated key-value

store where clients can acquire a lock to a key in MUSIC and be
guaranteed a sequentially consistent value of this key. When the
lock holder performs reads and writes to the locked key, i.e., in
a critical section, other writers are excluded and the operations
are sequentially consistent so that all reads and writes are totally
ordered.

Crucially, MUSIC limits the use of distributed consensus to
entry and exit of a critical section, and implements reads and
writes using more efficient quorum operations across an under-
lying eventually consistent store. So, while commonly used geo-
distributed databases [6, 7] implement a commit/redo log on top
of a sequentially-consistent store, METRIC implements a redo log
on top of an entry-consistent store, which promises much better
performance for geo-distributed sites due to its limited use of con-
sensus.

4.3 Algorithm Overview
own (key-range): Every range with an owner in METRIC is repre-
sented by a unique range-owner-key in MUSIC, with the value point-
ing to theMUSIC table that is the redo log for that range/owner com-
bination. Each range-owner-key is associated with a lock, where
the unique id of that lock is the ownerId. When a client requests
ownership of a range from a METRIC process, that process first
releases all locks that have key ranges that overlap with the re-
quested range. It then creates a new range-key corresponding to
the requested range and acquires a lock to this range, creating a
new ownerId.

At this point, the METRIC process is guaranteed that no other
client can modify the keys in the requested range by virtue of MU-
SIC’s locking semantics. It can read the redo logs of all the keys in
the requested range and populate the DB associated with it, thereby
providing the owner of this range with the sequentially consistent
value of these keys at the METRIC process. Note that this function
is used by clients both to acquire ownership during initialization
and during a transition, either voluntarily or on detecting a client
failure.

To grant ownership and populate the consistent value of the
keys in the DB, METRIC uses both distributed consensus for lock
transitions in MUSIC and quorum operations (to read the latest
redo log state) across sites. Hence, this is a relatively expensive
operation and should not be invoked very frequently. But as il-
lustrated in Section 2, there are many important use cases where
ownership transition is the exception rather than the norm. Ad-
ditionally, the cost can be reduced and amortized by prefetching
the corresponding data into nodes where there is an expectation of
ownership, an operation which is supported by both MUSIC and
METRIC architecture.

beginTransaction (ownerId): The METRIC process first ensures
that ownerId is indeed the owner for the key range and if yes, then
it creates a unique transaction id for this transaction. Further, it
creates a shadow table in the DB to track the operations in this
transaction.

executeQuery (ownerId, txId, query): After confirming that the
ownerId of the query is the owner, the METRIC process executes
this query locally at the DB and creates an entry in the shadow table
with the old and new value of the key after this query executes.
Note that, since an owner of a key range issues queries to the same
METRIC process and hence the same DB, it is guaranteed ACID
semantics. Further, any joins, which are only supported within the

5

key range of the owner, do not involve cross-site operations since
all the queries are executed locally.

commitTransaction (ownerId, txId): The METRIC process first
creates a concise digest of all the old and new values modified by
this transaction (physical logging), which was regularly maintained
in the shadow table of the DB during query execution. It then
appends this digest to the redo log in MUSIC created specifically
for this owner using cross-site quorum operations.

5 Discussion
In this paper, we have motivated the need for entry transactionality
and provided the complete semantics, abstractions, and design of
METRIC. Here, we describe the status of other aspects of this work
and elaborate on future directions.

Algorithms. Due to space constraints we could only provide
an overview of the basic algorithms. In future papers, we intend
to specify fully detailed algorithms with thorough arguments for
correctness. Due to the imperfect failure detection inherent in geo-
distributed services, it is often impossible to distinguish between
a failed process and one that is slow to respond. Hence, there can
be many subtle cases that we need to reason about. For example,
an owner, evicted due to suspicion of failure may corrupt the state
of the new owner. While the use of an entry consistent store guar-
antees exclusive access to the most recent state to the lock holder,
those apply only to a single key, whereas we are using it to enforce
ACID transactional guarantees across key ranges.

Implementation.We have a JAVA implementation of our system
in which we have implemented most aspects of the algorithms
except for failover of ownership [22]. We provide a JAVA jdbc
driver with additional APIs for ownership of key ranges that clients
can ingest and use to access METRIC. We use MariaDB for the SQL
database of each METRIC process and, as already noted, we use
MUSIC [12] as the EC store. We are currently in the process of
testing our implementation, and we will include relevant details in
future papers.

Production Deployment. While METRIC is best motivated by
edge architectures, it was initially designed to provide drop-in
geo-distributed clustering for components within AT&T’s ONAP
virtualized network control plane [23] that require the use of a SQL
database. We expect to integrate METRIC with ONAP Portal [24],
which provides common management services and connectivity
to clients of ONAP, and deploy it in production in early 2019. This
deployment is also expected to serve as a blueprint for the future
federation of ONAP components to serve 5G and edge use cases.

Evaluation.We intend to micro-benchmark our system using the
JAVA-compatible benchmark suite provided in [25], and compare
METRIC’s throughput and latency with other clustered database so-
lutions like MariaDB with Gallera, CockroachDB, and PostgreSQL
for multi-site deployments with varying WAN latencies between
sites. We plan to perform the same comparison in our production
deployment with the ONAP Portal as the client. Further, we intend
to present findings from our deployment, including details on own-
ership transition frequency, the ratio of reads to writes, and other
relevant metrics.

6 Conclusions
The scale and geo-distribution of edge architectures necessitate a
rethinking of state-management solutions to find the right balance

between strength of guarantees and performance. In this paper, we
introduced a new paradigm for database clustering, called entry
transactionality, that achieves a good balance by providing trans-
actionality only to the owner of a range of keys in the database.
We presented a middleware for entry transactional database clus-
tering called METRIC that provides a geo-distributed clustering
solution over instances of a SQL database. METRIC’s abstractions
of a clustered database with the notion of key ownership has sev-
eral important applications such as state management for AT&T’s
federated control plane and support for edge mobility/failover use
cases. We addressed the hard challenge of defining meaningful
METRIC semantics while incorporating the complex failure modes
of geo-distributed services. Finally, we presented an overview of
how the METRIC solution addresses the tension between efficiency
and geo-replication inherent to entry transactionality. We believe
METRICwill have a significant impact on AT&T’s edge services and
elsewhere. This first paper has described the motivation and core
ideas, and sets the stage for future papers to present the complete
details of a fully realized METRIC system.

References
[1] “Microsoft’s Azure Stack.” https://azure.microsoft.com/en-us/overview/

azure-stack.
[2] “ATT is Reinventing the Cloud Through Edge Computing.” http://about.att.com/

story/reinventing_the_cloud_through_edge_computing.html.
[3] “Verizon’s cloud-in-a-box pushes the edge with

OpenStack.” https://siliconangle.com/blog/2017/07/17/
verizons-cloud-box-pushes-edges-openstack-openstacksummit.

[4] “Akraino Edge Stack.” https://www.akraino.org/.
[5] F. Razzoli, Mastering MariaDB. Packt Publishing, 2014.
[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, et al., “Spanner: Google’s globally dis-
tributed database,” ACM Transactions on Computer Systems (TOCS), vol. 31, no. 3,
p. 8, 2013.

[7] “CockroachDB.” www.cockroachlabs.com.
[8] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, “The midway distributed

shared memory system,” in Digest of Papers. Compcon Spring, pp. 528–537, Feb
1993.

[9] “Google Vitess.” https://vitess.io/.
[10] “Citus Data.” https://www.citusdata.com/.
[11] B. Balasubramanian, R. D. Schlichting, and P. Zave, “Brief announcement: MUSIC:

multi-site entry consistencyfor geo-distributed services,” in Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham,
United Kingdom, July 23-27, 2018 (C. Newport and I. Keidar, eds.), pp. 281–284,
ACM, 2018.

[12] “MUSIC Code.” https://gerrit.onap.org/r/gitweb?p=music.git.
[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed

consensus with one faulty process,” J. ACM, vol. 32, pp. 374–382, Apr. 1985.
[14] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism needed

for distributed consensus,” J. ACM, vol. 34, pp. 77–97, Jan. 1987.
[15] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial

synchrony,” J. ACM, vol. 35, pp. 288–323, Apr. 1988.
[16] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1996.
[17] “The network is reliable: An informal survey of real-world communications

failures.” http://www.bailis.org/papers/partitions-queue2014.pdf.
[18] P. Deutsch, “The eight fallacies of distributed computing,” URL: http://today. java.

net/jag/Fallacies. html, 2004.
[19] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi, “Calvin:

fast distributed transactions for partitioned database systems,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data, pp. 1–12,
ACM, 2012.

[20] “FoundationDB.” https://apple.github.io/foundationdb/.
[21] “Pingcap TiDB.” https://www.pingcap.com/en/.
[22] “METRIC Seed Code.” https://github.com/esaurez/ETDB.
[23] “Open network automation platform (onap).” https://www.onap.org/.
[24] “ONAP Portal.” https://wiki.onap.org/display/DW/ONAP+Portal.
[25] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-bench: An

extensible testbed for benchmarking relational databases,” Proc. VLDB Endow.,
vol. 7, pp. 277–288, Dec. 2013.

6

https://azure.microsoft.com/en-us/overview/azure-stack
https://azure.microsoft.com/en-us/overview/azure-stack
http://about.att.com/story/reinventing_the_cloud_through_edge_computing.html
http://about.att.com/story/reinventing_the_cloud_through_edge_computing.html
https://siliconangle.com/blog/2017/07/17/verizons-cloud-box-pushes-edges-openstack-openstacksummit
https://siliconangle.com/blog/2017/07/17/verizons-cloud-box-pushes-edges-openstack-openstacksummit
https://www.akraino.org/
https://vitess.io/
https://www.citusdata.com/
https://gerrit.onap.org/r/gitweb?p=music.git
https://apple.github.io/foundationdb/
https://www.pingcap.com/en/
https://github.com/esaurez/ETDB
https://wiki.onap.org/display/DW/ONAP+Portal

	Abstract
	1 Introduction
	2 Motivation
	3 METRIC Semantics
	4 Design and Algorithms
	4.1 Overview
	4.2 Design
	4.3 Algorithm Overview

	5 Discussion
	6 Conclusions
	References

