
A locking service based on
Cassandra’s light-weight
transactions for MUSIC

Bharath Balasubramanian

MUSIC locking service
• MUSIC maintains client state in

Cassandra but requires a locking
service to provide stronger
guarantees over a key — entry
consistency.

• Currently locking service
implemented using Zookeeper’s
sequentially consistent (strictly
ordered writes) file system where
each write is done using distributed
consensus (specifically, RAFT) that
allows for atomic writes

Current Zookeeper-based
Solution

• lockRef = createLockRef (key): (i)
Atomically creates the “Key” node if it
does not already exist. (ii) Atomically
creates a new child node with a new
unique number and returns that as the
lock reference.

• Boolean result = acquireLock (lockRef,
key): (i) Retrieves all the children of key
with a non-atomic read (MUSIC
algorithms ensure this is sufficient). (ii)
Sorts all the children and returns true if
lockReference is the youngest.

• releaseLock (lockReference): Atomically
deletes the child node corresponding to
lockReference from the key if it exists.

Emp0

lockRef 1

lockRef 2

lockRef 3
Employee

Name
Salary

Emp0 5000

Emp1 2000

Emp3 1000

Emp4 6000

Cassandra
State

Zookeeper
State

Emp1

lockRef 1

lockRef 2

Main Problems with this
solution

OPs Tooling: Requires the MUSIC team and
Operations to deploy and manage two completely
independent tools, especially Zookeeper which is
relatively less trusted.

One ring to rule them all: Zookeeper guarantees that
ALL writes are atomic and hence ordered — this
requires that there is one global consensus ring. E.g.
Adding a child to Emp0 has to be ordered behind
some operation to Emp1 despite this being utterly
unnecessary. Has performance and fault-tolerance
implications.

No sharding: All data is replicated on all nodes leading
to the standard space, scale-out issues of a non
sharded system.

Emp0

lockRef 1

lockRef 2

lockRef 3

Zookeeper
State

Emp1

lockRef 1

lockRef 2

Other issues
• Zookeeper is not meant to store a huge number of nodes —

however, in use-cases like Conductor every row might have
a “Key” node created for it. Could be in the order of
thousands.

Hard to automatically garbage collect childless “Key”
lock objects — might have consistency issues and that
necessitates hand written clean up scripts in production.

• The sorting for an acquire lock could also be expensive if
there are many clients waiting for a lock — maintaining a
sorted queue in a sequentially-consistent write store is hard.

• All problems across last two slides exist with the Zookeeper
cousins like etcd, Consul etc. — in general sequentially
consistent stores.

Emp0

lockRef 1

lockRef 2

lockRef 3

Zookeeper
State

Emp1

lockRef 1

lockRef 2

Can we build a locking service
using Cassandra’s light-weight
transactions (LWT)?

Atomic insert if it does not exist of a
row (CAI)

Atomic delete if it exists of a row
(CAD)

Atomic update if condition matches

Key Question

Internally maintains paxos group
per partition (e.g. key) and each of
these operations use the following

rounds (4 round trips)

A minor digression: does Cassandra’s
LWTs render MUSIC irrelevant?

NO.
LWTs != entry consistency.

• LWTs have been around for sometime (more than 5 years at least) — in fact
they inspired the design of MUSIC. So they are not a surprise.

• Not even good enough for our current production use-cases

Conductor and portal (mdbc) needs atomic selects

Conductor needs more funky atomic inserts: if value is x do something
and if it is y do something else — easy to build on MUSIC since locking is
decoupled from the actions to the key.

SDN-C needs explicit locking for failover through Prom.

• Not sufficient for future use-cases: (1) multiple operations after acquiring a
lock, (2) locks across multiple keys, (3) federation etc. all of which require
explicit locking.

Cassandra-based Locking
Service

• For every table in MUSIC that maintains client state,
create a lock table (key, UUID) that partitions
according to key and sorts according to UUID.

• lockRef = createLockRef (key): (i) Create a unique
time-based UUID for this key (ii) Use CAI to insert
into lock table and return the UUID as the lockRef.

• Boolean result = acquireLock (lockRef, key): (i)
Simply perform a select of the top most row for the
key in the lock table (since it is sorted) and return
true if the lockRef UUID matches it.

• releaseLock (lockReference): Atomically deletes the
row in lock table corresponding to the
lockReference.

Employees Table

Sorted lock_Employees Table

Cassandra
State

Employee
Name

Salary

Emp0 5000

Emp1 2000

Emp3 1000

Emp4 6000

Key/Lock Name Lock Reference

Emp0 1

Emp0 2

Emp0 3

Emp1 1

Emp1 2

Problems with the zk solution-
addressed by the Cassa solution

• Zookeeper requires the MUSIC team and Operations to deploy and manage two completely
independent tools. [Only one tool: Cassandra that has far more production exposure at scale —
MUSIC can now be upstreamed into Cassandra]

• Zookeeper uses One ring to rule them all: [Cassandra maintains paxos rings at a per partition/
key level]

• Zookeeper is not meant to store a huge number of nodes — however, in use-cases like
Conductor every row might have a “Key” node created for it. Could be in the order of
thousands. [Cassandra is built to manage millions of rows.]

Hard to automatically garbage collect childless “Key” lock objects — might have
consistency issues and that necessitates hand written clean up scripts in production. [No
such objects by definition — no lock references for a key implies no row in lock table.]

• The Zookeeper sorting for an acquire lock could also be expensive if there are many clients
waiting for a lock — maintaining a sorted queue in a sequentially-consistent write store is hard.
[Keys sorted according to time UUID: order of creation]

• Zookeeper is not a sharded file system — all data will be replicated on all nodes. [Lock table
partitioned across nodes according to key. Hence all rows for same key in lock table will be
replicated and sorted on same node]

Analysis
• Correctness - Hopefully should not be a problem: (1) both solutions

essentially maintain a list of ordered lock references for each key where
inserts and deletes to the list are performed atomically (2) Neither requires
atomic reads. Hence semantically the same.

• Qualitative Performance -

Operation Cassa Locking
Cost

Zk Locking
Cost Comment

createLockRef

4 round trips, O
(nlogn) local sorting
where n = no of lock

references for the
key

4 round trips

While Zk is locally
more efficient this
operation is called

only once per critical
section

acquireLock O(1) local operation O (no. of lockRefs)
local operation

This operation is
typically called in a
loop and hence the
gains are crucial in

Cassa!

releaseLock 4 round trips 4 round trips

Conclusion
While we await the benchmarking results, the gains from a
Cassandra locking service seem to far outweigh that of a
Zk/etcd/Consul based locking service.

