
Policy Team Experiences in 
switching to Alpine Linux and 
upgrading to Java 11

Yehui Wang

June 13 , 2019



• Why Alpine?
- When size and time is matter .

• For comparison, Ubuntu Vs Alpine in Policy:

• https://docs.docker.com/samples/library/alpine/

Switching from Ubuntu Based to Alpine 
Linux Based Docker Image

With Ubuntu With Alpine

policy-api 998 MB 376 MB

policy-apex-pdp 1.3 GB 823 MB

policy-distribution 1.1 GB 446 MB

policy-drools 1.11 GB 434 MB

policy-pap 998 MB 349 MB

policy-pe 1.6 GB 927 MB

https://docs.docker.com/samples/library/alpine/


New Release Cadence Since Java 10

Update
Every Quarter

Time-based
Feature Release
Every 6 Months

Long-term Support
Release (LTS)
Every 3 Years

Java 10

(18.3)

Java 11

(18.9)

Java 12

(19.3)

Java 13

(19.9)

Java 14

(20.3)

Java 15

(20.9)

Java 16

(21.3)

Java 17

(21.9)



• The format of the new version-string is:
- $FEATURE.$INTERIM.$UPDATE.$PATCH

New Version-String Scheme Since Java10

$ java --version
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.18.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)
$

$ java --version
openjdk 11.0.1 2018-09-20 LTS
OpenJDK Runtime Environment (build 11+42-LTS)
OpenJDK 64-Bit Server VM (build 11+42-LTS, mixed mode)
$

$ java --version
openjdk 10.0.1 2018-04-19
OpenJDK Runtime Environment (build 10.0.1+13)
OpenJDK 64-Bit Server VM (build 10.0.1+13, mixed mode)
$



• Sun/Oracle JDK used to:
- was richer in features

- perceived to be more stable

- perceived to be more performant

• As of Java 11：
- Oracle JDK 11 and OpenJDK 11 are almost identical 

from a technical point of view

- You can’t use Oracle JDK 11 in production without 
paying Oracle from day one after its release (you can 
use it for development and testing)

• From the BCL to the GPL2+CPE+Commercail License

OpenJDK is the New Default, Oracle JDK is fully 
commercial



Oracle Feature and Long Term Support 
Release RoadMap



• What is Long Term Support
- Merge fixes into old JDK versions.

• What does Oracle support:
- Free update for current OpenJDK   version for 6 months.

- Commercial support for Oracle JDK for 5+ years for Java 11, 17, 23 etc.

- No Free LTS by Oracle

• What happens after six months if you want to stay on a specific major 
version while still receiving updates with security and bug fixes?
- Rely on Operating System updates

• On *nix platforms, you may well obtain your JDK via the operating system

- Pay for commercial support

- Free LTS by community for 4+years, built and shipped by Adopt OpenJDK.

- Amazon Corretto, a GPL+CE-licensed OpenJDK build with free long-term support

Long-Term Support



• At the beginning, you need to guarantee that your project works on 
Java 8 as well as on Java 11
- Create separate Jenkins server to support Java 11 configurations

- Using profiles in Maven for configuration specific to individual Java versions. 

• Update Tools:
- IntelliJ IDEA: 2018.2

- Eclipse: 2018-12 (4.10)

- Maven: 3.5.0
• compiler plugin 3.8.0

• surefire and failsafe: 2.22.0

- Anything that operates on bytecode, like
• like ASM (7.0), Byte Buddy (1.9.0), cglib (3.2.8), or Javassist (3.23.1-GA)

- Anything that uses something that operates on bytecode like
• Spring (5.1), Hibernate (5.4), Mockito (2.20.0)

Prepare for Migration 



• You are not required to create modules(JPMS) to 
have your code run on Java 9 or later

Don’t need modules to run on Java 11



• Removal Of Java EE Modules, deprecated in 
Java 9 and removed from Java 11
- the JavaBeans Activation Framework (JAF) in 

javax.activation
- CORBA in the packages javax.activity, javax.rmi, 

javax.rmi.CORBA, and org.omg.*
- the Java Transaction API (JTA) in the package 

javax.transaction
- JAXB in the packages javax.xml.bind.*
- JAX-WS in the packages javax.jws, javax.jws.soap, 

javax.xml.soap, and javax.xml.ws.*
- Commons Annotation in the package javax.annotation

Migrating From Java 8 To Java 11 – part 1



• Add third-party dependencies that contain the classes 
you need
- JAF: with com.sun.activation:javax.activation

- CORBA: there is currently no artifact for this

- JTA: javax.transaction:javax.transaction-api

- JAXB: com.sun.xml.bind:jaxb-impl

- JAX-WS: com.sun.xml.ws:jaxws-ri

- Commons Annotation: javax.annotation:javax.annotation-api

Migrating From Java 8 To Java 11 – part 2

https://search.maven.org/search?q=g:com.sun.activation AND a:javax.activation&core=gav
https://search.maven.org/search?q=g:javax.transaction AND a:javax.transaction-api&core=gav
https://search.maven.org/search?q=g:com.sun.xml.bind AND a:jaxb-impl&core=gav
https://search.maven.org/search?q=g:com.sun.xml.ws AND a:jaxws-ri&core=gav
https://search.maven.org/search?q=g:javax.annotation AND a:javax.annotation-api&core=gav


• Illegal Access To Internal APIs
- One of the module system’s biggest selling points is strong encapsulation. It 

makes sure non-public classes as well as classes from non-exported packages 
are inaccessible from outside the module.

- Most com.sun.* and sun.* packages, on the other hand, are internal and hence 
inaccessible by default.

• What to Do?
- Run jdeps on Your Code:  jdeps -jdkinternals Sample.class
- Fix the code by getting rid of internal API invocation. 
- Consider command line flags:

• --add-exports

• --add-opens

Migrating From Java 8 To Java 11 – part 3



• Removal Of Deprecated APIs and JavaFX
- Since Java 9, the @Deprecated annotation got a Boolean attribute: forRemoval. If 

true, the deprecated element is going to be removed as soon as the next major 
release. 

- Here are some of the more common classes and methods that were removed 
between Java 8 and 11:

• sun.misc.Base64 (use java.util.Base64)

• com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

• (use javax.swing.plaf.nimbus.NimbusLookAndFeel)

• on java.util.LogManager, java.util.jar.Pack200.Packer/ Unpacker:

• methods addPropertyChangeListener and removePropertyChangeListener

• on java.lang.Runtime: methods getLocalizedInputStream and getLocalizedOutputStream

• various methods on SecurityManager

- JDK 9 Release Notes – Removed APIs, Features, and Options, JDK 10 Release 
Notes – Removed Features and Options, JDK 11 Release Notes – Removed 
Features and Options

• Removed Java VisualVM

Migrating From Java 8 To Java 11 – part 4

https://www.oracle.com/technetwork/java/javase/9-removed-features-3745614.html
https://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html#Removed
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#Removed


• New Class Loader Implementations
- (URLClassLoader) getClass().getClassLoader() or 

(URLClassLoader) ClassLoader.getSystemClassLoader() 
sequences will no longer execute

• don’t cast the application class loader to URLClassLoader

• If you want to access the class path content, check the system 
property java.class.path and parse it:

• String pathSeparator = System

• .getProperty("path.separator");

• String[] classPathEntries = System

• .getProperty("java.class.path")

• .split(pathSeparator);

Migrating From Java 8 To Java 11 – part 5



• Oracle JDK Migration Guide

• Oracle Java SE Support Roadmap

• Oracle JDK Releases for Java 11 and Later

References

https://docs.oracle.com/en/java/javase/11/migrate/index.html#JSMIG-GUID-C25E2B1D-6C24-4403-8540-CFEA875B994A
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

