Policy Team Experiences In
switching to Alpine Linux and
upgrading to Java 11

Yehul Wang

June 13, 2019

Switching from Ubuntu Based to Alpine

* Why Alpine?
- When size and time is matter .

* For comparison, Ubuntu Vs Alpine in Policy:

With Ubuntu With Alpine
policy-api 998 MB 376 MB
policy-apex-pdp 1.3 GB 823 MB
policy-distribution 1.1GB 446 MB
policy-drools 1.11 GB 434 MB
policy-pap 998 MB 349 MB
policy-pe 1.6 GB 927 MB

* https://docs.docker.com/samples/library/alpine/

C1 THELINUXFOUNDATION CILFNETWORKING

https://docs.docker.com/samples/library/alpine/

New Release Cadence Since Java 10

Update Time-based Long-term Support
Every Quarter Feature Release Release (LTS)

Every 6 Months Every 3 Years

Java 10 Java 11 Java 13 Java 14 Java 15
(18.3) (18.9) (19.9) (20.3) (20.9)

Cl THELINUXFOUNDATION EILFNETWORKING

New Version-String Scheme Since JavalO

 The format of the new version-string Is:
- $FEATURE.SINTERIM.$UPDATE.$PATCH

S java --version

openjdk version "1.8.0_191"

OpenJDK Runtime Environment (build 1.8.0 191-8u191-b12-2ubuntu0.18.04.1-b12)
OpenlDK 64-Bit Server VM (build 25.191-b12, mixed mode)

S
S java --version S java --version
openjdk 11.0.1 2018-09-20 LTS openjdk 10.0.1 2018-04-19
OpenlJDK Runtime Environment (build 11+42-LTS) OpenlJDK Runtime Environment (build 10.0.1+13)
OpenJDK 64-Bit Server VM (build 11+42-LTS, mixed mode) OpenlDK 64-Bit Server VM (build 10.0.1+13, mixed mode)
S S

CITHELINUX FOUNDATION CILENETWORKING © ONAP

OpendDK'is the New Default, Oracle JDK is fully

commercial

» Sun/Oracle JDK used to:
- was richer in features
- perceived to be more stable
- perceived to be more performant

* As of Java 11.
- Oracle JDK 11 and OpenJDK 11 are almost identical
from a technical point of view

- You can’t use Oracle JDK 11 in production without
paying Oracle from day one after its release (you can
use it for development and testing)

* From the BCL to the GPL2+CPE+Commercail License

C1 THELINUXFOUNDATION CILFNETWORKING

Oracle Feature and Long Term Support

Release RoadMarp

Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2018 2019 2020
(9 - 901 —— 9.04 — 10 — 10.0.1 1002 — 11 - 11.0.1 11.02 — 12 — 12.0.1 12.0.2 — 13 - 13.0.1 13.0.2]
Oracle JOK Rel 18.9LTS
racie eleases 11 - 11.0.1 11.02 11.03 11.0.4 11.05 11.0.6
18.3
10 — 10.0.1 10.0.2
9-901——004
Bui41 8u151 8u161 8ui71 8u181 8u191 8u201 Bu211 8u221 8u231 8u241
8u152 8u162 8ui72 8u182 8u192 8u202 Bu212 8u222 8u232 8u242
7u151 7u161 7u171 7u181 7u191 70201 7u211 7u221 7u231 7u241 7u251
i ™
(OpenJDK: GPL Releases - Public)
Buibt Bul71 6uiB1 6u191 6u201 su211
(Java SE Advanced - Customers)
Last update
for JOK & (BCL - Public)
Last reviewed on 2018/02 Al future release dates subject to change BCL - Pubiic for non-commercial
Java SE Adavanced for commercial use
. v,

CITHELINUX FOUNDATION EILFNETWORKING © ONAP

OPEN NETWORK AUTOMATION PLATFORM

Long-Term Support

* What is Long Term Support
- Merge fixes into old JDK versions.

« \What does Oracle support:
- Free update for current OpenJDK version for 6 months.

- Commercial support for Oracle JDK for 5+ years for Java 11, 17, 23 etc.
- No Free LTS by Oracle

« What happens after six months if you want to stay on a specific major
version while still receiving updates with security and bug fixes?
- Rely on Operating System updates
* On *nix platforms, you may well obtain your JDK via the operating system
- Pay for commercial support
- Free LTS by community for 4+years, built and shipped by Adopt OpenJDK.
- Amazon Corretto, a GPL+CE-licensed OpenJDK build with free long-term support

CITHELINUX FOUNDATION EILFNETWORKING © ONAP

Prepare for Migration

At the beginning, you need to guarantee that your project works on
Java 8 as well as on Java 11
- Create separate Jenkins server to support Java 11 configurations
- Using profiles in Maven for configuration specific to individual Java versions.

« Update Tools:
- IntelliJ IDEA: 2018.2
- Eclipse: 2018-12 (4.10)

- Maven: 3.5.0

« compiler plugin 3.8.0

 surefire and failsafe: 2.22.0
- Anything that operates on bytecode, like

 like ASM (7.0), Byte Buddy (1.9.0), cglib (3.2.8), or Javassist (3.23.1-GA)
- Anything that uses something that operates on bytecode like

« Spring (5.1), Hibernate (5.4), Mockito (2.20.0)

C1 THELINUXFOUNDATION CILFNETWORKING

Don’t need modules to run on Java 11

* You are not required to create modules(JPMS) to
have your code run on Java 9 or later

C1 THELINUXFOUNDATION CILFNETWORKING

Migrating From Java 8 To Java 11 — part 1

 Removal Of Java EE Modules, deprecated In
Java 9 and removed from Java 11

- the JavaBeans Activation Framework (JAF) in
javax.activation

- CORBA in the packages javax.activity, javax.rmi,
javax.rmi.CORBA, and org.omg.*

- the Java Transaction API (JTA) in the package
javax.transaction

- JAXB In the packages javax.xml.bind.*

- JAX-WS In the packages javax.jws, javax.jws.soap,
javax.xml.soap, and javax.xml.ws.*

- Commons Annotation in the package javax.annotation

C1 THELINUXFOUNDATION CILFNETWORKING

Migrating From Java 8 To Java 11 — part 2

» Add third-party dependencies that contain the classes
you heed
- JAF: with com.sun.activation:javax.activation
- CORBA: there Is currently no artifact for this
- JTA: Javax.transaction:javax.transaction-api
- JAXB: com.sun.xml.bind:jaxb-impl
- JAX-WS: com.sun.xml.ws:jaxws-ri
- Commons Annotation: jJavax.annotation:javax.annotation-api

C1 THELINUXFOUNDATION CILFNETWORKING

https://search.maven.org/search?q=g:com.sun.activation AND a:javax.activation&core=gav
https://search.maven.org/search?q=g:javax.transaction AND a:javax.transaction-api&core=gav
https://search.maven.org/search?q=g:com.sun.xml.bind AND a:jaxb-impl&core=gav
https://search.maven.org/search?q=g:com.sun.xml.ws AND a:jaxws-ri&core=gav
https://search.maven.org/search?q=g:javax.annotation AND a:javax.annotation-api&core=gav

Migrating From Java 8 To Java 11 — part 3

* |llegal Access To Internal APIs

- One of the module system’s biggest selling points is strong encapsulation. It
makes sure non-public classes as well as classes from non-exported packages
are inaccessible from outside the module.

- Most com.sun.* and sun.* packages, on the other hand, are internal and hence
Inaccessible by default.

 What to Do?

- Run jdeps on Your Code: |deps -jdkinternals Sample.class
- Fix the code by getting rid of internal APl invocation.

- Consider command line flags:
« --add-exports
« --add-opens

C1 THELINUXFOUNDATION CILFNETWORKING

Migrating From Java 8 To Java 11 — part 4

 Removal Of Deprecated APIs and JavaFX

- Since Java 9, the @Deprecated annotation got a Boolean attribute: forRemoval. If
true, the deprecated element is going to be removed as soon as the next major
release.

- Here are some of the more common classes and methods that were removed
between Java 8 and 11.:
e sun.misc.Base64 (use java.util.Base64)
« com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel
 (use javax.swing.plaf.nimbus.NimbusLookAndFeel)
« on java.util.LogManager, java.util.jar.Pack200.Packer/ Unpacker:
« methods addPropertyChangelListener and removePropertyChangeListener
« on java.lang.Runtime: methods getLocalizedInputStream and getLocalizedOutputStream
 various methods on SecurityManager
- JDK 9 Release Notes — Removed APIs, Features, and Options, JDK 10 Release

Notes — Removed Features and Options, JDK 11 Release Notes — Removed
Features and Options

* Removed Java VisualVM

ATHELINUX FOUNDATION FILENETWORKING © ONAP

https://www.oracle.com/technetwork/java/javase/9-removed-features-3745614.html
https://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html#Removed
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#Removed

Migrating From Java 8 To Java 11 — part 5

* New Class Loader Implementations

- (URLClassLoader) getClass().getClassLoader() or
(URLClassLoader) ClassLoader.getSystemClasslLoader()
sequences will no longer execute

« don'’t cast the application class loader to URLClassLoader

- If you want to access the class path content, check the system
property java.class.path and parse it:

 String pathSeparator = System

* .getProperty("path.separator");

* String[] classPathEntries = System

 .getProperty("java.class.path")
* .split(pathSeparator);

C1 THELINUXFOUNDATION CILFNETWORKING

References

* Oracle JDK Migration Guide
 Oracle Java SE Support Roadmap
 Oracle JDK Releases for Java 11 and Later

C1 THELINUXFOUNDATION CILFNETWORKING

https://docs.oracle.com/en/java/javase/11/migrate/index.html#JSMIG-GUID-C25E2B1D-6C24-4403-8540-CFEA875B994A
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

