
DMaaP Architecture Evolution

Ciaran Johnston
Fiachra Corcoran

2021-09-07

Contents

• Problem Description

• Introduction of Operator-based Deployment

• Introduction of Event Bridge Component

• Strimzi vs Alternatives

• Evolution and Deprecation Strategy

• Discussion / Next Steps

Problem Description

• DMaaP is a central component in the ONAP architecture, forming the backbone of the
communications infrastructure
- 60+ topic interactions across 7+ projects

• There are currently 3 team members and 2 committers in the DMaaP development team
- Primarily Ericsson developers, with little broader community engagement

• Codebase is old, complex and contains lots of features no-one uses
- Lots of it is effectively unmaintainable due to lack of users or knowledge

- Significant number of unpublished dependencies – binaries available in Nexus, but no source code available for a
subset of these components: https://mvnrepository.com/artifact/com.att.nsa

- This is hindering / preventing adoption of Java 11

- Significant concern for software governance / licensing compliance

- Tight coupling to Zookeeper, including to share API keys between projects – significant security issue under
investigation

• The value in ONAP is on the differentiating capabilities for Network Automation

• There are other open-source alternatives for doing message routing which we can reuse instead
- We can rely on and work with the broader community to build specific features of interest to ONAP

rather than building and maintaining a bespoke solution

https://mvnrepository.com/artifact/com.att.nsa

External
service

Ingress

Publish/Fetch

(TLS)

OAUTH2
provider

Ingress
(TLS termination

+ upstream

encryption)

Request
access token

(TLS + Credentials)
Kafka authentication

(TLS + token)

Oauth2
authenticate

(TLS + token)Publish/Fetch

(TLS)

Publish/Fetch
(mTLS)

Oauth2
Authenticator

Get keys
from
JWKS

endpoint (TLS)

External
Listener

Internal
Listener

mTLS
authenticator

ONAP
service

Request
Kafka access token

(TLS + credentials)

Kafka
authorizer ZK node

Cluster
operator

User
operator

Topic
operator

Introduction of Operator-based Deployment

• What
• Strimzi Kafka operator

• Apache licensed, CNCF sandbox project

• Why?
• Kafka configuration is complex, maintaining mapping in helm

is tedious and expensive

• Declarative scale out

• Declarative K8 user and topic management

• It supports additional parts of the Kafka ecosystem
(e.g. Kafka connect, Mirrormaker)

• We can take advantage of additional Kafka features
(e.g. OAUTH based authentication, multiple security models
on the same cluster)

• It supports Kafka native exposure

• How?
• Deploy the Kafka operator via helm

• Deploy Kafka clusters via CRs

• Topic and user operators are deployed per cluster by the
cluster operator

https://strimzi.io/

Introduction of Event Bridge Component

• What
- New REST interface for Kafka access to potentially

replace DMaaP Message Router (MR)

• Why
- Simple codebase, community driven with an active

developer base – reduced maintenance for ONAP
- Preserves Kafka semantics (at-least-once delivery

guarantees, no data loss) which MR does not
- Manages Connectivity and security towards Kafka

declaratively using CRs

• How
- Just tell the Strimzi operator to spin it up as part of

OOM DMaaP charts
- Leverages API GW or service mesh for security

• Implications
- Alternative REST API with improved semantics in

ONAP
- Eventual deprecation and removal of Message Router

from ONAP codebase
- Topic provisioning moves to kubectl operators rather

than auto-creation in MR (seen as bad practice
anyway)

Publish/Fetch
(mTLS)

Strimzi
Bridge

Kafka Broker
ZK node

Cluster
operator

User
operator

Topic
operator

Strimzi vs Alternatives

• There are a number of alternatives for REST Bridge
- Confluent REST Proxy, Kafka-pixy (designed as a sidecar rather than a bridge)

• These alternatives have pros and cons (referenced here)
- On balance, coupled with the fact that Strimzi manages deployment and

administration through operators, it is the best option for ONAP

• Strimzi is a CNCF sandbox project

https://wiki.onap.org/display/DW/DMaaP+Architecture+Evolution+Considerations

Evolution Strategy – Kafka Deployment & Management

• Ongoing discussions with OOM PTL – positive feedback on the approach of
consuming a 3rd party helm chart for 3rd party dependencies

• PoC under way to verify the procedure (demo TBD)

• Plan to introduce in J release assuming architecture approval

• Expected to be fairly straightforward replacement of deployment procedure

• Some challenges on the Zookeeper dependency with MR to be worked out
- Strimzi locks down ZK for strimzi-only use
- MR is tightly coupled to Zookeeper for cluster communication, even in single-instance mode –

do we need two instances of ZK?
- Solutions under investigation
- Potential move to Kafka 3.0 in Strimzi which removes dependency on ZK (Q1 2022)

Evolution and Deprecation Strategy – REST API

• Analysis on existing active DMaaP MR Clients in Istanbul:
- https://wiki.onap.org/display/DW/Active+DMaaP+clients+in+Istanbul+Release
- Input required from other PTLs to verify completeness

• Topic creation process required – e.g. templates in OOM for topic creation during ONAP / DMaaP
installation

• Migration of publishers is relatively straightforward

• Migration of subscribers is more challenging
- Multiple client libraries in use depending on the codebase
- Potential discussion on releasing a mapping client for MR clients to use
- Some joined-up planning across ONAP is required to complete the migration

• Eventual deprecation and removal of MR needs to be planned in across releases – e.g.
deprecation in Jakarta, removal in London
- Can be challenging to prioritize – Global Requirement? Some other approach?

https://wiki.onap.org/display/DW/Active+DMaaP+clients+in+Istanbul+Release

Discussion and Next Steps

• DMaaP team would like to progress with the deployment migration
analysis and execution

• DMaaP team would like input on the best approach to evolving
towards a more maintainable and broader community-led API for
REST

