
Data-File-Collector
Datafile Collector is responsible for collecting PM counter files from PNF (Physical Network Function) and then publish these files to Dmaap DataRouter.

Process:

DataFile Collector (DFC) is a part of ONAP DCAEGEN2.

It handles the collection of data files which are notificated.

Subscribes VES-Notification Event
Only processes pmFileReady Events ("changeType": "FileReady")
Skipps and logs other notification events

Collects the files from the xNF which are linked in the notification FileReady event
Sends the collected files to DataRouter by push event

Mangement Interfaces:

Heartbeat: http://<container_address>:8100/heartbeat or https://<container_address>:8443/heartbeat
Start DFC: http://<container_address>:8100/start or https://<container_address>:8433/start

Stop DFC: http://<container_address>:8100/stopDatafile or https://<container_address>:8433/stopDatafile

Supported collection ways:

http
https
sftp
ftp

Retry:

tries to download the files, if temporarily faults appear
retries are limited to a configurable number of times
increasing delay between each attempt
Finally give up and log error
Eeach not published file will be published with new files when new events are coming in???

API:

Regarding APIs the file collector can querry file-router, if a file has been published previously: https://docs.onap.org/projects/onap-dcaegen2/en/latest
/sections/services/dfc/consumedapis.html

 data-router:

GET /feedlog/ feedId ? queryParam{ } { }

queryParam: type=pub&filename=FILENAME

HTTP Code Body Description

400 NA error in query

200 [] Not published yet

200 [$FILENAME] Already published

Issues:

In memory implementation of downloaded files
Check if files are published to data-router after in memory cache check
This is not thread save / /podssynchronizable over more instances
Not scalable because not synchronized cache of already downloaded files

Restart will lead to building up cache again (asking data-router).
Maximum of 200 files are in a thread pool, unless they are not collected, the file collector is blocked.

Happened, when files were older 24h (Nokia storing time) after restart plattform.

https://docs.onap.org/projects/onap-dcaegen2/en/latest/sections/services/dfc/consumedapis.html
https://docs.onap.org/projects/onap-dcaegen2/en/latest/sections/services/dfc/consumedapis.html

Problem with scalability

Currently the file-collector is running as (1 POD)single instance
The file collector be configured to (PODS)cannot run multible instances
If the file-collector would be configurable for multible instances, the current problems will occur:

no synchronization about published files threadsafe and distributed (processing time of download and publishing)
could be, that more instances will process one file and publish it to datarouter several times.
result would be a multiplicated counters which are identical.

Analysis:

Flux<FilePublishInformation> createMainTask(Map<String, String> context) {
 return fetchMoreFileReadyMessages() //
 .doOnNext(fileReadyMessage -> threadPoolQueueSize.incrementAndGet()) //
 .doOnNext(fileReadyMessage -> counters.incNoOfReceivedEvents()) //
 .parallel(NUMBER_OF_WORKER_THREADS) // Each FileReadyMessage in a separate thread
 .runOn(scheduler) //
 .doOnNext(fileReadyMessage -> threadPoolQueueSize.decrementAndGet()) //
 .flatMap(fileReadyMessage -> Flux.fromIterable(fileReadyMessage.files())) //
 .flatMap(fileData -> createMdcContext(fileData, context)) //
 .filter(this::isFeedConfigured) //
 .filter(this::shouldBePublished) //
 .doOnNext(fileData -> currentNumberOfTasks.incrementAndGet()) //
 .flatMap(this::fetchFile, false, 1, 1) //
 .flatMap(this::publishToDataRouter, false, 1, 1) //
 .doOnNext(publishInfo -> deleteFile(publishInfo.getInternalLocation(), publishInfo.getContext())) //
 .doOnNext(publishInfo -> currentNumberOfTasks.decrementAndGet()) //
 .sequential();
}

private boolean shouldBePublished(FileDataWithContext fileData) {
 Path localFilePath = fileData.fileData.getLocalFilePath();
 boolean shouldBePublished = (publishedFilesCache.put(localFilePath) == null);
 if (shouldBePublished) {
 shouldBePublished = checkIfFileIsNotPublishedInDataRouter(fileData);
 }

 if (!shouldBePublished) {
 logger.debug("File: {} is being processed or was already published. Skipping.", fileData.fileData.
name());
 }
 return shouldBePublished;
}

The synchronization problem when having multible instances of file-collector can be found in this code block:

.filter(this::shouldBePublished) <Line 11>: This method puts the file into local memory cache. This cache is only on one instance.
If not in local chache, the implementation asks the data-router, if file has been already published. This takes time
In this time, on another instance this could happen with another notification message, containing the same file to collect
Then both instances will put it to local cache and ask datarouter. Both will get the same answer

The time period between asking data-router and .doOnNext(publishInfo -> deleteFile(publishInfo.getInternalLocation(), publishInfo.getContext()))
<Line 15> is critical.

This has to be synchronized over the different instances

Has someting like this happened in the single instance even after restart?

Every file has only once been published to data-router

This is the log from the data-router:

MariaDB [datarouter]> select count(*) as count, FILENAME from log_records group by FILENAME order by count desc;
+-------+---+
| count | FILENAME |
+-------+---+
1596	NULL
1	PM202209280145+020024C20220928.0130+0200-20220928.0145+0200_MRBTS=999965.xml.gz
1	PM202209270400+020024C20220927.0300+0200-20220927.0400+0200_MRBTS=515027.xml.gz
1	PM202209271545+020024C20220927.1530+0200-20220927.1545+0200_MRBTS=999965.xml.gz
1	PM202209262245+020024C20220926.2230+0200-20220926.2245+0200_MRBTS=999965.xml.gz
1	PM202209280330+020024C20220928.0315+0200-20220928.0330+0200_MRBTS=999965.xml.gz
1	PM202209261045+020024C20220926.1030+0200-20220926.1045+0200_MRBTS=515027.xml.gz
1	PM202209271745+020024C20220927.1730+0200-20220927.1745+0200_MRBTS=999965.xml.gz
1	PM202209261645+020024C20220926.1630+0200-20220926.1645+0200_MRBTS=515027.xml.gz
1	PM202209261400+020024C20220926.1300+0200-20220926.1400+0200_MRBTS=515027.xml.gz
1	PM202209280530+020024C20220928.0515+0200-20220928.0530+0200_MRBTS=999965.xml.gz
1	PM202209261200+020024C20220926.1100+0200-20220926.1200+0200_MRBTS=999965.xml.gz
1	PM202209271945+020024C20220927.1930+0200-20220927.1945+0200_MRBTS=999965.xml.gz
1	PM202209261000+020024C20220926.0900+0200-20220926.1000+0200_MRBTS=515027.xml.gz
1	PM202209270900+020024C20220927.0800+0200-20220927.0900+0200_MRBTS=515027.xml.gz

Conclusion:

There seems to be no problem when running the file-collector as single instance.
Running on scaled . multi-instances will lead to unpredictable side effects

	Data-File-Collector

